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Abstract: Carbon pricing is often seen as regressive, disproportionately burdening low-income

consumers. I show that higher prices following a global carbon price would be mildly regressive in

industrialized countries, mildly progressive in developing countries, and steeply regressive across

countries. Refunding revenues via national carbon dividends would reverse all three findings. The

net effect would be globally progressive, even without international transfers. My approach to

estimating the global distributional effects of carbon pricing uses bilateral trade data and features

non-homothetic consumers who differ both between and within countries. The supply side includes

substitution of inputs along global value chains.

1. Introduction

Governments around the world have begun pricing emissions of carbon dioxide (CO2) and other

greenhouse gases. In 2005, when the European Union (EU) launched its Emissions Trading System

(ETS), less than 5% of global greenhouse gas emissions were subject to a price. In 2020, price

coverage surpassed 15% and, with the newly launched permit scheme in China, now likely exceeds

20% (World Bank and Ecofys, 2020). A carbon price pushes consumers to buy less emissions-

intensive goods and producers to use cleaner inputs. But it also has a cost, especially to consumers

who may see prices rise. I ask how this cost is distributed globally.

Taking into account the propagation of carbon prices through global value chains, I estimate how

the consumer cost of carbon pricing is distributed globally—both between countries and across

income levels within them. Between countries, differences are shaped by the composition of ag-

gregate consumption and the ‘greenness’ of production—consumers in countries that rely heavily

on fossil fuel inputs face higher price increases. Within countries, consumption baskets vary with

income and so do consumer costs. A global distributional analysis of carbon pricing needs to

capture both of these margins. Ignoring either one would risk misrepresenting the welfare cost

to large groups of consumers, since there are many high-income consumers even in the poorest

countries and many low-income consumers in rich countries. Moreover, even consumers with sim-
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ilar incomes can face substantially different carbon pricing burdens based on where they live. By

estimating a combined, global cost distribution, this paper contributes a new perspective to the

analysis of carbon pricing.

To estimate the global consumer cost of carbon pricing, I calibrate a global model of demand

and supply using a trade gravity approach. On the demand side, I estimate a global demand system

using data on the final goods trade between 35 sectors and 40 countries in the World Input-Output

Database (WIOD). I build on work by Fajgelbaum and Khandelwal (2016) who propose a global

Almost Ideal Demand System (AIDS) which can be parameterized using gravity equations. The

model includes non-homothetic preferences—expenditure shares vary with income—which are

essential to capture distributional effects within countries. Fajgelbaum and Khandelwal (2016) use

their model to estimate the distribution of the gains from trade. I use this non-homothetic gravity

approach to analyze the global cost of carbon pricing.

On the supply side, I model substitution of intermediate inputs in global value chains, again

using gravity equations to identify model parameters from inter-industry trade flows. A carbon

price leads to shifts in global production as emissions-intensive inputs become more expensive. I

also allow producers to substitute energy fuels. These supply side adjustments mediate the cost

increase to consumers and render my estimates more realistic. A naive extrapolation ignoring

supply side adjustments significantly over-estimates the consumer cost.

I assess three climate policy scenarios. The first is a global uniform carbon price, suggested

by economic theory as an efficient response to the global climate externality. The global effects

are highly regressive. Consumers in the bottom half of the world income distribution suffer an

equivalent variation welfare loss more than twice as large as consumers in the top 10%. Impor-

tantly, differences between countries dominate those within them. Carbon pricing affects average

consumers in poor countries more than poor consumers in average countries. I show that these

differences between countries are mostly due to the emissions intensity of production rather than

differences in the composition of aggregate consumption.

It has been shown that the distributional effect of national carbon prices ultimately depends on
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how revenues are used (Metcalf, 2009; Gonzalez, 2012) and I show that this also holds globally

when simulating national per capita lump sum transfers. Such ‘carbon dividends’ feature in many

carbon pricing proposals, including that by the Climate Leadership Council for the United States1.

Carbon dividends render the global uniform carbon price progressive—disproportionately bene-

fiting low-income consumers—both within countries and globally. This demonstrates that carbon

pricing with appropriate revenue use can be globally progressive, even in absence of international

transfers. And I show that the achieved mitigation benefits would likely be globally progressive as

well.

A global uniform carbon price may not be likely anytime soon. I thus investigate two further

scenarios that are more acutely policy relevant. For one, I simulate the introduction of the EU

ETS in 2005. There is a growing literature studying the design and effectiveness of the EU ETS

(surveyed in Ellerman and Buchner, 2007; Martin et al., 2016), but less is known about its distribu-

tional effects. I find that the EU ETS looks regressive across the 490 million European consumers,

again driven by between-country differences: consumers in Eastern Europe and Baltic EU states

are most affected. Finally, I investigate Border Carbon Adjustments (BCA) to counter competitive

pressures and carbon leakage under unilateral climate policy (Markusen, 1975; Hoel, 1996). Re-

cent plans for the ‘European Green Deal’ include proposals for a BCA-type mechanism2. I find

that complementing an EU-wide carbon price with BCA would generate a rather small consumer

cost, which is distributionally neutral.

My findings are subject to limitations. Mine is a partial equilibrium framework that focuses on

‘use side’ effects—the cost to consumers from higher prices. While the model allows for demand

substitution, value chain adjustments and fuel shifting, it excludes other, potentially important

effects of carbon pricing. In particular, it abstracts from shifts in factor markets that may affect

incomes (Fullerton and Heutel, 2007; Rausch et al., 2011) and from energy-saving technological

change (Acemoglu et al., 2012a; Aghion et al., 2016). The framework also imposes substantial

1The Climate Leadership Council’s plan is available at https://www.clcouncil.org/.
2The EU’s plan, including proposals for a Carbon Border Adjustment Mechanism (CBAM), is available at https:
//ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en.
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structure. Perhaps the most important caveat is that, in absence of globally harmonized micro-

data, I estimate demand system parameters from aggregate trade flows between countries. Because

this relies on strong assumptions, I test my model against consumer survey data from multiple

countries, finding a good fit. I also show that the main results are robust to alternative data sources

and parameter choices.

This article contributes to the literature on the distributional effects of environmental policy

(Drupp et al., 2021). Much of this literature is focused on the within-country effects of unilat-

eral climate policy. Previous work suggests that the consumer cost of carbon pricing and related

fuel taxes is somewhat regressive, at least in rich countries such as the United States (Poterba,

1991; Grainger and Kolstad, 2010; Williams et al., 2015). However, results vary with modeling

choices and revenue use (West and Williams, 2004; Rausch et al., 2011). And results may differ

across countries, with fuel taxes appearing regressive in some countries, but progressive in others

(Sterner, 2012). A separate literature has focused on estimating how average effects differ between

countries (early examples are Whalley and Wigle, 1991; Shah and Larsen, 1992), and how those

differences shape climate policy negotiations (e.g. Mehling et al., 2018). This paper contributes

estimates of the global consumer cost of carbon pricing accounting for differences both between

and within countries. In line with single-country studies, I estimate that carbon pricing is moder-

ately regressive in some, mostly rich countries and moderately progressive in poorer ones. But my

results also highlight that differences between countries, driven mainly by value chain emissions,

are more important in shaping how costs are distributed across the world income distribution. Fi-

nally, my results confirm that the progressivity of ‘carbon dividends’ holds at the global scale, even

before between-country transfers.

2. Modeling the global cost of carbon pricing

I estimate how the consumer cost of carbon pricing is distributed globally—both between coun-

tries and at different income levels within them. To do so, I combine a global demand system with
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a model of global value chain adjustment and input-output based emissions accounting.

My model is not a complete general equilibrium model, but is intended to capture, while remain-

ing tractable, those dynamics that I consider especially important in this context. On the demand

side, consumers adjust their expenditures in response to rising final goods prices induced by carbon

pricing. On the supply side, producers can substitute away from carbon-intensive energy fuels as

they become more costly and away from dirty intermediate inputs. This shifts global value chains

and mitigates price increases experienced by consumers. In this section, I present the model. In the

next section, I estimate model parameters from bilateral trade flows. Appendix A provides further

detail.

2.1. Demand: A global Almost Ideal Demand System

The core of my model is an Almost Ideal Demand System (AIDS) extended to multiple coun-

tries. Key to capturing distributional effects, AIDS incorporates non-homothetic preferences—

consumers at different income levels within countries spend different shares of their income on

emissions-intensive goods. Households h = 1, ...H have total expenditure budgets xh which they

divide among goods j = 1, ...J in a fashion summarized by expenditure shares:

s j(p,xh) =
x jh

xh
= α j +

J

∑
j′=1

γ j j′ log
(

p j′
)
+β j log

(
xh

a(p)

)
(1)

The share of expenditure that h devotes to good j (s j) depends on preferences for good j (α j),

prices of all goods j′ (p j′) and h’s real income ( xh
a(p)), normalized by price index a(p) based on price

vector p. The degree of demand substitution is captured by cross-price elasticities between j and

other goods j′ (γ j j′). Non-homothetic consumption is captured by the income (semi)-elasticity of

j (β j), which drives different expenditure shares across income groups. A positive value (β j > 0)

means that good j is a luxury and it is a necessity if β j < 0.

While allowing for non-homothetic consumption, AIDS maintains convenient aggregation, a

property that I use in Section 3 to estimate demand elasticities from the trade flow of final goods
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between countries. Here, I follow closely the methodology proposed by Fajgelbaum and Khandel-

wal (2016), who estimate how the gains from trade are distributed across consumers. The approach

pairs AIDS with the assumption of national product differentiation (Armington, 1969). Each sec-

tor s = 1, ..S from each country of origin i = 1, ...I produces a different variety, so that the total

number of goods is J = S× I. Destination countries are labeled n = 1, ...N. Consumers’ average

tastes differ by destination (αn j), but consumers in all countries share the same price and income

elasticities (γ j j′ and β j). These are strong assumptions, which I test against country-level consumer

survey data in Section 5.

I quantify welfare effects as Hicksian equivalent variation—the share of income that a consumer

would give up for a price increase not to occur:

Proposition 1 (Welfare Effect) The marginal welfare effect of a small change in (log) prices of

goods j, {p̂ j = dlog(p j)}, experienced by consumer h in country n is:

ω̂nh =
J

∑
j=1

(
−p̂ j

)
Sn j −

(
J

∑
j=1

β j p̂ j

)
log
(

xnh

x̃n

)
+x̂nh

= Ŵn + ψ̂nh +0

(2)

Proof. See Appendix A.1, following Fajgelbaum and Khandelwal (2016).

The welfare cost from higher prices can be separated into an aggregate cost common to all

consumers in country n (Ŵn) and an individual cost to each consumer h (ψ̂nh). The former is a

function of the aggregate expenditure share on good j by consumers in country n (Sn j). The lat-

ter is a function of h’s income (xnh) relative to the inequality-adjusted mean income (x̃n) in the

country3, shaping the deviation from average expenditure patterns as driven by income elasticities

β j. In other words, Ŵn captures the average consumer incidence between countries while ψ̂nh cap-

tures distributional effects within countries4. The final element is the change in h’s (log) nominal

income x̂nh, which I generally assume to be unaffected by carbon pricing (x̂nh = 0), except when

3Inequality-adjusted real income is x̃n = xneΣn where Σn = E
[

xnh
xn

log
(

xnh
xn

)]
is the Theil index of inequality.

4In simulations with non-marginal changes in prices p̂, equation (2) is integrated numerically to account for demand
substitution in 5 intermediate steps between initial and new prices.
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investigating a carbon dividend policy.

2.2. Supply: Input substitution in global value chains

Producers react to changes in input costs by moving away from emissions-intensive inputs. This

in turn reduces the amount of emissions embodied in final goods and softens the price increase

to consumers. To capture such supply-side adjustments, my model tracks emissions throughout

global value chains and allows for intermediate input substitution.

For simplicity I assume that production requires only energy and a composite of intermediates,

in fixed proportions. Producers in each country-sector j, all assumed to be perfectly competitive,

have identical Constant Elasticity of Substitution (CES) production functions across intermediate

inputs k = 1, ...K with destination-specific prices ρk j. All country-sectors produce intermediates

and final goods, so that J = K. For any level of output X j in country-sector j, the representative

producer minimizes input costs C j, resulting in the following cost shares spent on intermediates k:

Ek j =
ρk j fk j

C j
= θk jρ

(1−σ j)
k j P(σ j−1)

j (3)

The cost share of input k, Ek j, depends on a technology factor θk j, which defines the cost share

under equal input prices. Ek j is decreasing in the price of k, ρk j, relative to the input price index

Pj = (∑
k

θk jρ
(1−σ j)
k j )1/(1−σ j). With constant returns to scale and perfect competition, input shares

and output prices are independent of the level of final demand. Prices remain proportional to input

cost at all times.

In Section 3, I estimate substitution elasticities σ j, this time using data on inter-industry trade

flows of intermediates. Once parameterized, I simulate input substitution in response to carbon

pricing and approximate the new equilibrium in global input-output linkages. To trace emissions,

and their price effect, through value chains, I use input-output based accounting methods which

capture all indirect emissions embodied in consumption (e.g. Levinson and O’Brien, 2019; Sager,

2019). Value chains are summarized by the Direct Requirement matrix A with elements ak j which
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show the dollar amount of intermediate input from country-sector k used to produce a dollar of

output in country-sector j. Following Leontief (1970), the relationship between the J-vectors of

final goods output y and total output including intermediates x is as follows:

x = [I−A]−1 y = Ty (4)

This yields the Total Requirement matrix T = [I−A]−1 with elements tk j showing the dollar

amount of total input from country-sector k used to produce a dollar of final output in country-

sector j, accounting for all upstream processes. The same accounting applies to emissions:

e = T′d (5)

The J-vector d of direct emissions intensities d j describes for each country-sector j the CO2

emissions per dollar of output (tons of CO2 per $). Taking into account upstream emissions,

elements e j of vector e show the total CO2 intensity of a dollar of final consumption generated by

country-sector j, including all upstream emissions. The total emission intensity e j of final goods

produced by country-sector j determines its relative price increase5.

Price dynamics:

Assume a carbon price τ (in $ per ton of CO2) is put on all emissions. In a static model,

this raises final prices to p∗j = (1+ τe j)p j. When allowing for intermediate input substitution,

adjustments will alter value chains (A) and, consequently, emissions intensities (e j). This will

invite yet further adjustments to inputs until we reach a new equilibrium:

Proposition 2 (Price effect with input substitution) Assume a set of carbon prices {τk j} is

levied on intermediates k used in production j. Given initial input requirements {ak j} and di-

5Price increases of final goods are the same whether carbon prices are levied at the source in the form of taxes on
fossil fuels or in the form of a consumption tax levied on the CO2 content of final goods. Due to perfect competition,
producers will fully pass-through price increases to consumers and competitive firms will internalize carbon prices
even if they were collected at the point of sale. The distinction between consumption and production taxes can affect
the country where revenue is collected, however.
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rect emissions intensities d, the new equilibrium is defined jointly by:

a∗k j = ak j

(
∑

K
k′=1 θk′ j(1+ τk′ je∗k′)

(1−σ j))1/(1−σ j)

1+ τk je∗k

)σ j

∀k, j (6)

e∗ =
[
(I−A∗)−1]′d (7)

Proof. See Appendix A.2.

For each carbon pricing scenario, I approximate numerically the new equilibrium value chain

(A∗), emission intensities (e∗j) and prices (p∗j). The procedure is described in Appendix A.3.

Fuel switching:

Besides intermediate input substitution, I model fuel switching in production between 4 primary

fuel groups: Coal, Gas, Oil, and Renewables6. The key assumption is that the total amount of

energy content (in TJ) needed to produce one unit of output in each sector is constant, but that pro-

ducers can shift between the fuels to generate that energy7. Here, I rely on meta-survey estimates

of pairwise interfuel substitution by Stern (2012)8, paired with data on CO2 emission intensities

that vary by country-sector and fuel type. In the data I use, described in Section 3, emissions are

assigned to that sector where the fuel is combusted (Genty et al., 2012), rather than to the mining

and petroleum sector supplying it. Fuel switching thus generates new direct emission intensities

d∗j , which then feed into the intermediate input substitution process that results in A∗ and e∗j . The

most quantitatively important fuel switching occurs in the electricity sector, where coal tends to

be replaced with gas and renewables when carbon is priced. The reduced direct emission intensity

(d∗j ) of the electricity sector in turn lowers the total emissions of all downstream sectors (e∗j).

Discussion and Limitations:

6I group WIOD energy-related emissions as follows: Coal (anthracite, lignite and coke); Oil (gasoline, Diesel, jet
kerosene, LFO, HFO and naphtha); Gas (natural and other gas); Renewables (biogas, bio diesel, electricity, heat
production, nuclear, hydropower, geothermal, solar, wind).

7Fuel substitution uses annual average fuel prices from the BP Statistical Review of World Energy and emissions
content from the IEA 2006 Guidelines on Default Carbon Content Values.

8Results are similar when I assume that energy services are produced in a CES production function over fuel inputs
with the same parameters as for intermediates in (3).
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The primary purpose of my model is to capture distributional effects across consumers in many

countries and at different income levels. I focus on the “use-side” effects—the cost to consumers

from higher final goods prices, accounting for demand substitution. The adjustments on the supply

side—fuel switching and intermediate input substitution—mitigate the price increase passed on to

consumers and render the incidence estimates more realistic.

My model excludes other margins of adjustment that may be important. I assume perfect com-

petition and constant returns to scale, which means that input prices, other than the carbon price

element, remain fixed. There is no adjustment in the price of production factors such as capital

or labor, and carbon prices are fully passed through to consumers. Equilibrium price adjustments

would likely mitigate the cost increase experienced by consumers, though supplier market power

may partially offset that. And imperfect pass-through of prices to consumers, for which there is

evidence in some industries (Ganapati et al., 2019), would similarly mitigate consumer welfare

losses.

While I allow for fuel switching, including replacement of fossil fuels with renewable energy

sources, my model is static in the sense that it assumes a constant share of energy in production.

This precludes the possibility that energy inputs are partially substituted with other inputs such

as natural resources or labor. I also assume a constant degree of substitutability between fuels,

excluding the possibility that carbon pricing induces energy-saving innovation in production tech-

nologies (Aghion et al., 2016). While I allow for differential effects of carbon pricing by sector

and country of origin, my framework holds other factors influencing global trade patterns constant.

In particular, I ignore induced fluctuations in exchange rates, which may be substantial under bor-

der tax adjustments (Barbiero et al., 2019). Again, it seems likely that exchange rate adjustments

would soften the induced price differentials between countries and thus lower consumer burdens.

I also hold transport margins fixed, even though transport costs themselves may be affected by

carbon prices (Shapiro, 2016).

Finally, while I will highlight additional channels such as the use of carbon pricing revenues for

transfers and the distribution of mitigation benefits, I ignore other welfare-relevant effects that may
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occur via labor markets or shifting factor incomes (Rausch et al., 2011).

3. Calibrating the model

My model is calibrated using Multi-Regional Input-Output (MRIO) databases that capture flows

of intermediate and final goods between country-sector pairs. I mainly use the World Input-Output

Database (WIOD) Release 2013, which covers 35 sectors in 40 countries (plus ‘Rest of the World’),

between 1996 and 2009. WIOD contains bilateral trade flows between country-sector pairs and

input-output relationships (A). WIOD environmental satellite accounts document CO2 emissions

by fuel type for each country-sector (d j). Appendix Table 5 provides an overview of the consump-

tion and emissions profiles of the 40 countries.

While WIOD is one of the most commonly used MRIO databases9, I show that my results carry

through with a different data source, the harmonized version of Eora (Eora 26), which covers

189 countries and 26 sectors, as recently as 2015. This section summarizes how I estimate the

remaining model parameters from bilateral trade flows, with further details provided in Appendix

B.

3.1. Demand: Estimating demand system parameters

To identify demand elasticities, I follow Fajgelbaum and Khandelwal (2016) in embedding

AIDS demand in a multi-sector Armington model of international trade so that each sector s= 1, ..S

from each country of origin i = 1, ...I sells a different variety of final goods. Consumers in

destination countries n = 1, ...N choose from these varieties, of which there are 1400 in WIOD

(J = S× I = 35×40).

Trade costs between country-pairs (tni) are of the iceberg variety10, adding a constant multiple

9One limitation of using WIOD data is that it cover only 35 sectors of the economy. It cannot capture substitution
of intermediate goods within sectors as more fine-grained analyses might (as e.g. Levinson, 2009, who distinguishes
450 manufacturing industries in the US). However, WIOD is one of the few sources for harmonized MRIO accounts
and substitution between the 35 sectors should already capture a significant portion of input substitution.

10This proportionality of trade costs is maintained in counterfactual analyses under carbon pricing
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to prices ps
ni = tni ps

i . I estimate income semi-elasticities (β s
i ) for each of the 1400 varieties and

price elasticities (γs) for the 35 sectors, assuming that substitution is symmetric and restricted to

goods in the same sector from different origins. The estimation strategy follows closely that by

Fajgelbaum and Khandelwal (2016) and produces very similar estimates. A detailed description is

given in Appendix B.1. I estimate the following equation for aggregate expenditure shares (Ss
ni) by

consumers in country n on goods from sector s and country i:

Ss
ni =

Y s
i

YW
+αi(Ss

n−Ss
W )− (γs

ρ
s)Dni +∑

l
(γsds

l )Gl,ni +(β s
i −αiβ

s
)Ωn + ε

s
ni (8)

Consumers in destination n buy more from sector s in origin i if that sector accounts for a larger

share of world total output ( Y s
i

YW
) and if consumers in n spend more on goods from sector s relative to

the world (Ss
n−Ss

W ). Variation in bilateral trade costs (Dni), which apply proportionately to sector-

level costs (ρs), helps identify within-sector price elasticities (γs). If trade is more concentrated

among less distant country pairs within one sector than another, I estimate that the former sector

faces more price-elastic demand. As proxy for bilateral trade cost, I use data from CEPII’s Gravity

database on the population-weighted log-distance between country pairs (Dni), as well as binary

indicators for common language and a shared border (Gl,ni).

Variation in the inequality-adjusted mean real income11 of destination n relative to the world

(Ωn = yn− yW ) identifies income elasticities (β s
i ). If textiles from the United States are consumed

more in richer and more unequal countries than textiles from India, then American textiles have

a higher income elasticity. Ωn is based on country population and GDP per capita from the Penn

World Tables and, assuming that income is log-normally distributed, the Gini index of income

inequality from the World Income Inequality Database (WIID). Following the methodology of

Fajgelbaum and Khandelwal (2016), I also proxy for the non-homothetic price index a(p) with

a Stone price index for each destination country n using quality-adjusted prices as provided by

Feenstra and Romalis (2014). To pin down γ̂s, I follow Novy (2013) in setting ρs = ρ = 0.177

11Inequality-adjusted mean real income is y = log
(

x̃
a(p)

)
where x̃ = xe∑ and Σ = E

[ xh
x log

( xh
x

)]
.
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for all s. To estimate sector-average income elasticities β
s
, I estimate a second Engel curve for

country-level aggregate expenditure shares:

Ss
n = α

s +β
s
yn + ε

s
n (9)

Estimates of β
s

together with estimates of αi from the above gravity estimation identify origin-

sector specific income semi-elasticities β s
i .

3.2. Supply: Estimating production function parameters

On the supply side, I estimate intermediate substitution elasticities using data on bilateral inter-

industry trade. I consider intermediate flows between destination sector s in country n (labeled j

above) and origin sector s′ in country i (labeled k above). In WIOD there are 1.96m (= 14002)

such country-sector pairs.

I again assume that each sector s′ in origin i produces a distinct input variety (K = S× I) and

that the market for intermediate goods is perfectly competitive. I further assume that prices are

the same for intermediates and final goods from each sector s (ρs
ni = ps

ni) and that both are subject

to iceberg trade costs tni between destination n and origin i (ps′
ni = tni ps′

i ). Finally, I assume that

production functions are identical in sectors s across countries n (σn,s = σs and θ ss′
ni = θ ss′

i , ∀n).

I estimate the following equation for the cost share in sector s and destination n that goes to

intermediates from sector s′ in origin i, denoted Ess′
ni :

log
(

Ess′
ni

)
= (1−σs)ρlog(Dni)+∑

l

[
(1−σs)dl log

(
Gl,ni

)]
+λ

s
n +ζ

s′
i + ε

ss′
ni (10)

Sector-specific CES production elasticities σs are identified from cross-sectional variation in bi-

lateral trade costs, which are again proxied by bilateral distance between country pairs (Dni) from

CEPII. The other elements of Gl,ni are indicators for common language and a shared border, also

from CEPII. λ s
n and ζ s′

i are fixed effects for destination and origin country-sectors respectively.12

12For estimation, run ordinary least squares (OLS) with origin/destination country-sector fixed effects, which has been
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This is similar to standard CES gravity estimation following Anderson (1979) and Anderson and

Van Wincoop (2003), with details provided in Appendix B.2. I estimate this equation separately

for the 35 sectors s and restrict substitution to inputs from the same sector across different ori-

gins. American electronics producers can substitute Swedish metal for Chinese metal, but not for

textiles.13

3.3. Model overview and parameter estimates

While previous studies have used trade gravity approaches to inform climate policy (Shapiro,

2016; Larch and Wanner, 2017; Caron and Fally, 2018), I focus more narrowly on distributional

effects. Table 1 summarizes the key components of my model used to estimate welfare effects

of global carbon pricing scenarios across consumers in different countries and at different income

levels within them. The global AIDS framework allows for non-homothetic preferences via origin-

sector specific income semi-elasticities (β s
i ), as well as consumer substitution across origins within

sectors via price elasticity parameters (γs). Both income and price elasticities of demand are es-

timated from equations (8) and (9) using WIOD (or Eora) data on bilateral final goods trade fol-

lowing Fajgelbaum and Khandelwal (2016). In the case of WIOD, there are 1400 country-sector

specific income (β s
i ) and 35 sector-specific price elasticity (γs) parameters.

The supply side model allows for substitution of intermediate inputs across origins within sector

via CES elasticities (σs). These are estimated from equation (10) using inter-industry trade flows.

Substitution across primary energy fuels—coal, oil, gas and renewables—is based on the assump-

tion of constant energy need (in TJ) per output paired with interfuel substitution elasticities from a

literature survey (Stern, 2012).

Parameter robustness: I provide a summary of parameter estimates in Appendix D. Since they

are based on cross-sectional patterns of bilateral trade flows, it is plausible to assume that they

shown to be consistent (e.g. Head and Mayer, 2014). I again assume that ρ = 0.177.
13Simulations show that allowing full substitution across input sectors further softens price increases, but does not

overturn any of the qualitative findings reported below.

14



Table 1: Method overview
Theory Parameters Data

Demand AIDS preferences Income elast. (β s
i ) Final goods trade

(by country-sector) Price elast. (γs) (WIOD, Eora)
(estimated)

Supply: Input CES production CES elast. (σs) Inter-industry trade
substitution (by sector) (estimated) (WIOD, Eora)

Supply: Fuel Constant TJ per unit Interfuel elast. Fuel shares
switching (by country-sector) (Stern, 2012) (WIOD, Eora)

Notes: Overview of the key model characteristics and data sources.

represent long-term elasticities. The CES elasticity estimates are relatively large, averaging around

σs ≈ 4. While this is similar in magnitude to the long-run elasticity estimates for intermediate

substitution by Peter and Ruane (2018), excessive substitution may result in an underestimate of

price increases experienced by consumers. The same could be said of the degree of interfuel

substitution. I show in sensitivity analyses that excluding either form of substitution generates

larger absolute costs, but with a very similar distribution.

My demand elasticities are nearly identical to those of Fajgelbaum and Khandelwal (2016) who

also provide an extensive discussion of the limitations to this approach. Reassuringly, the estimates

are highly consistent over time and appear plausible. For example, agricultural output is consis-

tently classified as a necessity (β̂s < 0) and real estate services as a luxury good (β̂s > 0). Within

sectors, varieties from the United States and Japan appear more likely to be luxury goods, while va-

rieties from India and Indonesia are necessities. As discussed above, I rely on the assumption that

we can interpolate consumption at different income levels from differences in aggregate demand

between countries. To test this admittedly strong assumption, I compare my results to consumer

survey data from multiple countries, finding a relatively good fit.

I perform further sensitivity analysis in two ways. First, I include confidence intervals from

simulations using random parameter draws (β̂ s
i , γ̂s) from the joint normal distribution implied by

regression estimates. Second, I compare results using two different data sources, WIOD and Eora,

which yield two separate sets of parameter estimates, but similar results.
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4. The global consumer cost of carbon pricing

I estimate the global consumer cost under three carbon pricing scenarios. First, I simulate a

global carbon price uniformly applied in all countries. This is what economic theory may suggest

as an efficient response to the global climate externality. I use 2004 as a baseline year, as it is before

the introduction of the first large-scale carbon pricing scheme, the EU Emissions Trading System

(ETS), though results look similar for later years. While a global uniform carbon price may not be

realistic anytime soon, an EU-wide carbon price already exists. My second scenario is a stylized

version of the EU ETS launched on January 1, 2005. Third, I simulate a policy of complementing

an EU-wide carbon price with Border Carbon Adjustments (BCA) that target emissions in traded

goods.

4.1. Scenario 1: A global uniform carbon price

I estimate the consumer cost from a global uniform carbon price of 30 USD per ton of CO2 emis-

sions from fossil fuel combustion14. Figure 1 shows how the resulting consumer cost is distributed

across the global income distribution. The horizontal axis represents percentiles of the income dis-

tribution of the ca. 4.2 Billion residents living in the 40 WIOD countries in 2004. The vertical axis

shows the average change in consumer welfare, expressed as a share of annual expenditure. The

dashed line shows central estimates and the solid line a 10th degree polynomial approximation.

The blue band represents 95% confidence intervals15. Negative values represent welfare losses.

The first insight here is that a global carbon price is rather regressive at a global scale. The cost

to consumers in the bottom half of the world income distribution—equivalent to losing between

2% and 3% of income—is more than twice as large as that of consumers in the top 20%. Because

the pattern visible in Figure 1 is not monotonic, I confirm this regressivity more formally in Row

(1) of Table 2, reporting average effects for quintiles of the global income distribution, along with

14Some may deem a carbon price of 30 USD per ton too low. I show in Appendix F that, while the overall cost is
higher, the relative distribution is similar under a carbon price of 100 USD per ton.

15Confidence intervals are from 500 separate simulations, each using a different set of model parameters drawn from
the joint normal distributions from estimations (8), (9) and (10).
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two measures of progressivity. The first measure (’Linear’) is the expected change in welfare effect

when moving from one quintile to the next higher quintile, as predicted from a linear regression.

Positive numbers indicate a regressive effect, as is the case here: Moving down by one quintile

in the income distribution is associated with an increase in cost (a reduction in welfare) by 0.66

percentage points. The second measure (’Suits’) is the measure of tax progressivity proposed by

Suits (1977). This measure ranges from -1 to 1 and negative values suggest regressivity, as for

this scenario with a Suits index of -0.18. The consumer cost of carbon pricing appears globally

regressive.

Figure 1: Global price of 30 USD per ton - Global distribution of consumer cost

Notes: This figure shows the global distribution of the consumer welfare effect under a global
uniform carbon price of 30 USD per ton of CO2 simulated at the end of 2004 (40 WIOD coun-
tries). The horizontal axis shows percentiles of the income/expenditure distribution across the
4.2 billion inhabitants of the 40 WIOD countries in 2004. The consumer gain is the average
welfare effect, expressed as equivalent share of the total expenditure budget (dashed) and
approximated with a 10th degree polynomial (solid). Shaded regions are 95% confidence
intervals from 500 separate simulations, each using a different set of parameters drawn from
the joint normal distributions from estimations (8), (9) and (10).

The second insight is that the burden varies drastically between countries. Figure 2 shows the

cost distribution in each of the 40 countries, across percentiles of the country income distribution.

These are simulated from equation (2) and thus smooth. Upward-sloping lines suggest that carbon
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pricing is regressive—with larger losses (negative values) to low-income consumers—and vice

versa. In rich nations, such as Germany, Sweden and the United States, carbon pricing looks re-

gressive. In developing nations, such as China and Indonesia, it looks somewhat progressive. This

is in line with single-country studies, which find weak to moderate regressivity in rich (Poterba,

1991; Grainger and Kolstad, 2010) and progressivity in poor ones (Datta, 2010; Sterner, 2012;

Dorband et al., 2019). It is also in line with recent simulation results from Chepeliev et al. (2021),

who find significant between-region heterogeneity in the distributional effects of carbon pricing

policies.

But Figure 2 also suggests a third, more nuanced insight: The consumer cost of carbon pricing

varies much more strongly between countries than within them. For example, there is a mild

difference in cost between American consumers at the 10th percentile of the income distribution

(equal to 1.1% of expenditures) and those at the 90th percentile (1.0%). But there is a much

greater difference with Chinese consumers, at either the 10th (3.3%) or 90th (4.0%) percentiles.

Put differently, the slopes of the lines in Figure 2 are much less important than the distances

between them. Differences between countries matter more than those within them.

‘Greenness’ of industry explains most of the between-country incidence:

The differences between countries shown in Figure 2 could be driven by differences in consump-

tion baskets (Caron and Fally, 2018) or by differences in the emissions intensity of value chains

(Copeland and Taylor, 1994; Levinson, 2009). It has long been recognized that national economic

structure has important repercussions for environmental policy (Whalley and Wigle, 1991; Shah

and Larsen, 1992). My estimates suggest that the ‘greenness’ of value chains is the more important

factor to explain the consumer cost difference between countries. The reason is home bias: Chinese

consumers spend much more of their budget on Chinese rather than, say, Swedish goods. The re-

verse is true for Swedes. Since value chains in China are more CO2-intensive than those in Sweden,

carbon pricing hurts Chinese consumers more than Swedish ones. To show that, I replicate the sce-

nario discussed above, but equating the direct emissions intensities across all countries (d j) to that

18



Figure 2: Global price of 30 USD per ton - Within-country consumer cost

Notes: This figure shows the distribution of the consumer welfare effect in each country
under a global uniform carbon price of 30 USD per ton of CO2 simulated at the end of
2004 (40 WIOD countries). The horizontal axis shows percentiles of the income/expenditure
distribution within each of the 40 WIOD countries in 2004. The consumer gain is the average
welfare effect, expressed as equivalent share of the total expenditure budget.

of the corresponding sector in Sweden. Even maintaining other differences between countries—in

value chains and aggregate consumption baskets—this significantly reduces the global regressivity

and nearly eliminates differences between countries. As shown row (2) of Table 2, the Suits index

moves from -0.18 to -0.09, a marked decline in regressivity. The full visual replication can be

found in Appendix Figure 7. Most of the higher cost of carbon pricing in lower income countries

stems not from differences in consumption, but from more carbon-intensive modes of production.

National ‘carbon dividends’ result in global progressivity:

We have so far focused on the cost to consumers from higher prices that follow the introduction

of carbon pricing policies. But carbon pricing may also generate revenues, which governments

can use to offset that cost. It has been shown that the distributional effect of national carbon prices

ultimately depends on how that revenues are used (Metcalf, 2009; Gonzalez, 2012). I confirm that

this holds in my global analysis as well: the regressive cost of higher prices can be transformed into
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Table 2: Scenario comparison - All prices of 30 USD per ton
Welfare Effect (as % of budget) Pro-/regressive (p/r)

Q1 Q2 Q3 Q4 Q5 Total Linear Suits
(1) Scenario 1: Global Price -2.59 -2.96 -3.19 -2.05 -0.92 -1.16 0.66 (r) -0.18 (r)
(2) Swedish emissions -0.60 -0.68 -0.74 -0.55 -0.36 -0.4 0.14 (r) -0.09 (r)
(3) Net of dividend 5.24 2.24 0.28 0.01 -0.19 -0.07 -1.09 (p)
(4) Mitigation benefits 17.35 11.08 6.92 1.66 0.32 0.99 -3.86 (p)
(5) Scenario 2: EU ETS -1.02 -0.49 -0.37 -0.32 -0.31 -0.37 0.19 (r) -0.13 (r)
(6) Scenario 3: EU BCA -0.42 -0.38 -0.32 -0.25 -0.31 -0.31 0.09 (r) -0.01 (r)

Notes: Overview of simulation results. Columns (1)-(5) show average consumer cost (as % of total
budget) by quintile, and column (6) shows the total average. Column (7) shows the percentage point
expected change in cost when moving from a given quintile to the next higher quintile, derived as the
coefficient from a linear regression of consumer cost on percentile rank multiplied by 20. Negative values
denote progressivity. Column (8) shows the measure of tax progressivity proposed in Suits (1977), with
positive values denoting progressivity.

a globally progressive net effect with revenue recycling. This is shown in Figure 3. It assumes that

governments redistribute 100% of the revenue collected by carbon pricing in their own country,

sharing it in equal per capita fashion among all residents. Such ‘carbon dividends’ feature in many

policy proposals, including that by the Climate Leadership Council for the United States.

Figure 3b shows that the net welfare effect of a global 30 USD per ton carbon price paired with

carbon dividends would be progressive within all countries16. Lower income consumers may ex-

perience a larger loss in relative spending power, expressed as share of their budget (Figure 1). But

they experience a smaller loss in absolute dollar terms. As a result, the equal lump sum payment

is more than enough to compensate them. Meanwhile, the drop in spending power experienced by

higher income consumers may be smaller relative to their budgets, but it is larger in absolute terms

and not fully compensated by the dividend. Figure 3 further suggests that the net progressivity of

carbon pricing with dividends is more pronounced in more unequal countries, which have a larger

difference between low-income consumers and the average consumer who pays for the carbon div-

idend. In any case, the median consumer is better off after dividends in all 40 WIOD countries. It

is important to clarify that the aggregate welfare effect remains negative once the relative effects

16Because some countries are net exporters/importers of emissions, it now matters where pricing occurs. Figure 3
assumes that revenue is collected and redistributed in the country where final consumption occurs. Appendix Figure
8 shows that a similar pattern holds when we tax in the country where emissions occur in production.
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in Figure 3 are weighted by income, at least before we consider the benefits of avoided climate

damage discussed below.

The progressivity of carbon dividends within countries may be unsurprising, but Figure 3a shows

that the welfare effect is also globally progressive. Row (3) of Table 2 shows that the progressivity

is substantial: The bottom three quintiles of the global income distribution are significantly better

off with the policy, while the fourth quintile is largely unaffected and only the highest quintile

experiences a net welfare loss. Overall, 70% of consumers worldwide are better off with carbon

pricing plus dividends. It is important to note that this scenario does not include any transfers

between countries. Each country recycles only those revenues raised domestically. The progres-

sivity within each country appears to outweigh any average differences in welfare cost between

countries. One possible factor contributing to this may be the higher levels of income inequality in

low-income countries, which results in an even larger progressivity as seen in Figure 3b. National

carbon prices plus dividends are sufficient to achieve a globally progressive climate policy.

Consumer cost is likely complemented by progressive mitigation benefits:

In addition to price changes and income transfers from carbon dividends, carbon pricing may

result in other welfare-relevant changes. One important aspect are the benefits from reduced green-

house gas emissions, which are likely to be substantial and unevenly distributed. Climate damages,

and hence the benefits from reducing them, will likely fall disproportionately on places that are al-

ready hot today, that lack adaptive capacity and that rely heavily on vulnerable activities such as

agriculture and manual labor (Dell et al., 2012; Burke et al., 2015; Ricke et al., 2018). All of which

tend to be correlated with lower income levels.

I use estimates from elsewhere in the literature to compare the consumer cost estimated here to

the likely benefits from emissions reductions. Row (4) of Table 2 shows estimates of the mitigation

benefits achieved by the global carbon price of 30 USD per ton simulated here. Reductions in CO2

emissions are valued using the country-level Social Cost of Carbon (SCC) estimated by Ricke et al.

(2018) and converted into relative income shares17. The mitigation benefits are highly progressive.
17I use the central estimates from the ”Middle of the road” scenarios in Ricke et al. (2018), specifically
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Even without revenue recycling, the combined effect, the sum of rows (1) and (4), would likely

be positive for the 3 bottom quintiles of the world income distribution. When revenue is recycled

through a carbon dividend, all quintiles are likely to gain and especially those with lower incomes.

Other dynamics with potentially important distributional consequences are less easily captured.

For example, carbon pricing is likely to induce shifts in factor incomes. Estimates for individual

rich countries suggest that these ‘source-side‘ effects may be progressive (Goulder et al., 2019), in

part by raising the share of income flowing to workers relative to owners of capital (Fullerton and

Heutel, 2007; Rausch et al., 2011). It is plausible that a similar shift would occur in lower income

countries, again leading to a progressive effect. The framework used here does not capture the

relevant general equilibrium effects and thus cannot quantify these ‘source-side’ effects. However,

recent simulation results from Chepeliev et al. (2021) suggest that carbon pricing may lead to lower

skill wage premia, thus lowering global income inequality. Furthermore, we may expect dynamic

adjustment processes, such as technological innovation spurred by carbon pricing (Acemoglu et al.,

2012a; Aghion et al., 2016), and possibly important repercussions of market imperfections, such

as search frictions in labor markets (Hafstead et al., 2022). Understanding their implications for

the global burden of carbon pricing is a promising area for future research.

RCP6.0/SSP2/BHM-SR with a pure rate of time preference of 2% and an elasticity of marginal utility of 1.5%,
converted to 2004 dollars. The combined SCC in this sample is $152.
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Figure 3: Global price of 30 USD per ton and national carbon dividend - Consumer cost

(a) Global distribution (b) Within-country distribution

Notes: Consumer welfare effect under a global uniform carbon price of 30 USD per ton of CO2 simulated in 2004 (40 WIOD countries), net of the benefits from
a per capita carbon dividend in each country. Revenue is collected and redistributed in the country where final consumption occurs. The horizontal axis shows
percentiles of the income/expenditure distribution, both globally (Panel a) and within each of the 40 WIOD countries (Panel b) in 2004. Otherwise equivalent to
Figure 1 (Panel a) and Figure 2 (Panel b).
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4.2. Scenario 2: The EU Emissions Trading System (ETS)

The European Union Emissions Trading System (EU ETS) launched on January 1, 2005. I

estimate the consumer cost of a stylized EU ETS by calibrating my model to 2004 and simulating

a price of 30 USD per ton levied on EU ETS target sectors18 in 27 EU ETS countries19.

Figure 4a shows that the consumer cost appears regressive across the 490 million EU residents.

The bottom 10% of the EU income distribution incurs a cost equivalent to losing 1-1.5% of expen-

diture. For the top half of the distribution, that cost is below 0.5%. Regressivity is again confirmed

by a negative Suits index, shown row (5) of Table 2. Just like before, Figure 4b shows only modest

variation within countries, but larger differences between them. Consumers in EU member states

with lower incomes, particularly Eastern European and Baltic states, experience a much higher

cost than their peers in Germany or Sweden, no matter their incomes. This is again caused by the

more CO2-intensive value chains in lower-income member states. Estonia, with its’ high levels of

shale oil use, is a case in point.

These results show an ex ante evaluation of a stylized EU ETS. Realized outcomes may have

differed as the initial phases of the EU ETS were fraught by a range of implementation issues and

many permits were allocated free of charge. The policy also did not apply uniformly within sectors,

but instead targeted larger installations. A large literature documents these and evaluates the real-

ized effects of the EU ETS (Ellerman et al., 2016; Martin et al., 2016). Despite the stylized nature

of this scenario, my results suggest one feature of European carbon prices which has received less

attention—the possibly regressive effects across EU consumers, with a disproportionate cost to

those living in Eastern European and Baltic member states. This is in line with recent estimates by

Feindt et al. (2021) who also find especially large welfare losses for consumers in Eastern Europe.

18The EU ETS covered about half of CO2 emissions. To emulate the intended sector targeting, I apply the carbon
price to the following WIOD sectors: “Electricity, Gas and Water Supply”, “Mining and Quarrying”, “Pulp, Paper,
Printing and Processing”, “Coke, Refined Petroleum and Nuclear Fuel”, “Chemicals and Chemical Products”, “Other
Non-Metallic Mineral”, and “Basic Metals and Fabricated Metal”.

19The EU ETS price fluctuated around 20-25 EUR per ton throughout 2005. Of 28 EU members in 2018, my sample
contains 27. Bulgaria and Romania joined in 2007 and are included. So is the UK, which left in 2020. Only Croatia,
which joined in 2013, is not included. Non-EU participants Iceland, Liechtenstein and Norway are not in the sample.
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4.3. Scenario 3: A Border Carbon Adjustment (BCA) in the EU

An important concern about carbon pricing is that it may weaken the competitiveness of domes-

tic industries relative to foreign competitors subject to less stringent climate policy. This could

cause carbon leakage—emissions simply move abroad instead of being avoided altogether (Levin-

son and Tayler, 2008; Aichele and Felbermayr, 2015; Fowlie et al., 2016). One answer to these

concerns are Border Carbon Adjustments (BCA), which levy tariffs on the emissions content of

imports that do not face a carbon price at home (Felder and Rutherford, 1993), complemented

by appropriate rebates for exports. In theory, BCA are an elegant solution to the problem of car-

bon leakage (Markusen, 1975; Hoel, 1996) and they feature in major policy proposals, including

those by the Climate Leadership Council for the United States20 and the European Union’s Green

Deal21. Despite their theoretical and political appeal, we know little about the distributional ef-

fects of BCA across income groups. My framework combines distributional welfare analysis with

differentiated goods trade and global value chains, making it possible to explore the distributional

effects of BCA.

I consider a BCA to complement a carbon price of 30 USD per ton in the EU22. The baseline

scenario is a uniform carbon price of 30 USD per ton on all CO2 emissions in the entire EU.

A second scenario adds to that a BCA—a carbon tariff on untaxed emissions imported into the

EU and a tax exemption for exported emissions. Figure 5a shows the net effect of BCA, which

is difference between the two scenarios. The consumer cost of the BCA is rather small and is

distributed with an inverse U-shape across the 490 million EU residents. The largest cost falls on

consumers at the bottom of the EU income distribution, equivalent to losing 0.5% of expenditure.

Yet, BCA appears close to distributionally neutral, with a Suits Index close to 0, as shown in row

(5) of Table 2.

Figure 5b shows that the distribution within countries is again rather flat and has a mild inverted

20The Four Pillars of our Carbon Dividends Plan, https://clcouncil.org/our-plan/
21EU Green Deal - Roadmap and key actions, https://ec.europa.eu/info/files/annex-roadmap-and-key-actions en
22In the analysis of the EU ETS, I limited carbon pricing to emissions in sectors initially targeted by the EU ETS.

Here I consider BCA to complement a domestic carbon price covering all sectors. The results are qualitatively
similar—albeit with smaller costs—for a BCA limited to EU ETS sectors.
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U-shape—consumers with the highest and lowest incomes incur the largest cost. This pattern

might be due to both groups consuming larger shares of imported goods which experience a price

increase due to BCA. At the bottom of the income distribution these could be imported necessities

(e.g. textiles from India), while at the top these could be imports with relatively higher income

elasticities (e.g. textiles from the United States). Overall, the cost of BCA varies only modestly,

both within countries and between them. This may be due to a relatively similar composition of

imports by different EU countries and income groups.

In sum, my simulations suggest a modest and distributionally neutral cost of BCA. While I focus

on the distributional effects of BCA, my simulations also confirm the potential to reduce leakage,

which is in line with the previous literature23. I estimate that complementing the EU-wide carbon

price with a BCA would have reduced global CO2 emissions by an additional 0.7Gt compared to

a global baseline of around 18Gt.

23CGE models suggest that BCA have the potential to significantly reduce leakage (e.g. Elliott et al., 2010; Böhringer
et al., 2016a,b) and shift the burden of emission reduction to countries without domestic carbon prices (Aldy and
Pizer, 2015; Böhringer et al., 2018). Using trade gravity approaches, Aichele and Felbermayr (2015) predict signifi-
cant leakage in absence of BCA and Larch and Wanner (2017) estimate that carbon tariffs somewhat reduce leakage
while imposing a net welfare loss on representative consumers in developing countries.
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Figure 4: EU Emission Trading System of 30 USD per ton - Consumer cost

(a) EU-wide distribution (b) Within-country distribution

Notes: This figure shows the distribution of the consumer welfare effect under an EU-wide (27 countries) uniform carbon price of 30 USD per ton of CO2,
applied to the EU ETS target sectors and simulated in 2004 (model includes 40 WIOD countries). The horizontal axis shows percentiles of the income/expenditure
distribution, both EU-wide (Panel a) and within each of the 27 EU countries among the 40 WIOD countries (Panel b) in 2004. Otherwise equivalent to Figure 1
(Panel a) and Figure 2 (Panel b).
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Figure 5: EU Border Carbon Adjustment of 30 USD per ton - Consumer cost

(a) EU-wide distribution (b) Within-country distribution

Notes: Consumer welfare effect under a Border Carbon Adjustment to complement an EU-wide (27 countries) uniform carbon price of 30 USD per ton of CO2,
applied to all sectors and simulated in 2004 (model includes 40 WIOD countries). The horizontal axis shows percentiles of the income/expenditure distribution,
both EU-wide (Panel a) and within each of the 27 EU countries among the 40 WIOD countries (Panel b) in 2004. Otherwise equivalent to Figure 1 (Panel a) and
Figure 2 (Panel b).
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5. Robustness

My simulations rely on a number of assumptions outlined in Section 2 and parameters estimated

in Section 3, which deserve probing.

5.1. Consistency with consumer survey data

On the demand side, I follow Fajgelbaum and Khandelwal (2016) in identifying global demand

system parameters from aggregate trade flows. The within-country distribution is extrapolated

based on income elasticities estimated from aggregate expenditure patterns24. Simply put, be-

cause richer countries buy more textiles from the United States and fewer textiles from India, I

expect consumers within countries to follow a similar pattern. To test this rather strong assump-

tion, I compare my estimates to consumer survey data which is commonly used in single-country

studies. Figure 9a compares my estimates of the consumer cost of carbon pricing across income

groups with survey-based estimates for China, India, Germany, Sweden, and the USA25. I focus

on the initial incidence, the cost of introducing the first 1 USD per ton of CO2. The solid lines

show estimates based on my structural demand model. The dotted lines show estimates based on

consumer surveys. While there are some differences between the two approaches—notably the

average emissions intensities differ because survey data does not single out imports—the compar-

ison is reassuring. The two different approaches yield similar estimates of the cost distribution

within countries as well as the differences between. Still, the demand system I estimate might be

a better fit for some countries than others. In any case, given the dominance of between-country

differences, which are entirely based on observed data in my framework, any potential bias in

within-country estimates is unlikely to significantly alter the main results.

24This could be avoided with harmonized micro-data from all countries capturing consumption at different income
levels and separating goods by origin. I am not aware of such data.

25Data from the Consumer Expenditure Survey (USA, 2005), EU Household Budget Survey (DEU/SWE, 2005), and
the World Bank Global Consumption Database (CHN/IND, 2005-10). Consumption categories (600+ for USA, 106
for CHN/IND, 59 for DEU/SWE) are hand-matched to the 35 WIOD sectors
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5.2. Alternative input-output data (Eora)

The results presented above are calibrated using the World Input-Output Database (WIOD).

WIOD provides data on 35 sectors in 40 countries (plus RoW). WIOD is one of the most com-

monly used sources for multi-regional input-output (MRIO) data, mainly due to the its’ harmonized

and symmetric structure and relative reliability of data. But WIOD is also subject to a number of

limitations. I thus replicate my headline results, this time calibrating my model using the symmet-

ric and harmonized version of Eora (Eora 26). Eora covers 26 sectors in 189 countries as recently

as 2015. The improved geographic coverage in Eora comes at the cost of a loss of sectoral granu-

larity and more frequent data interpolation, although both data sources have been shown to largely

overlap (Moran and Wood, 2014).

Figure 9b compares estimates using Eora data to those using WIOD, both simulating the inci-

dence of a global carbon price of 30 USD per ton at the end of 2004. WIOD results (blue) are those

from Figure 1. Eora results (red) are simulated using all 189 countries but the graph is limited to

consumers from the same 40 countries in WIOD. The two sets of results rely on entirely separate

estimates of demand and production elasticities, country-sector emissions and trade flows. Level

differences are largely due to the more comprehensive emissions accounts in Eora. WIOD reports

CO2 emissions from fossil fuel combustion. Eora reports six greenhouse gases26 emitted from a

larger range of activities including land use. Reassuringly, the resulting cost distribution is very

similar, both showing the same steep fall between the 60th and 90th percentiles and costs that are

about twice as large for the bottom half of the income distribution than for the top 20 percent.

Interestingly, the lower end of the income distribution looks more flat when using Eora while it

showed a slight progressivity when using WIOD, possibly due to the inclusion of non-CO2 green-

house gases such as methane, which are more common in necessity and subsistence goods such as

food.

Another drawback of WIOD is data availability. WIOD covers a large share of the world

26Eora includes six Kyoto gases following the PRIMAP-hist database: carbon dioxide (CO2), methane (CH4), nitrous
oxide (N2O), sulphur hexafluoride (SF6), hydrofluorocarbons (HFCs), and perfluorocarbons (PFCs). Results look
similar when restricted to CO2 emissions from fossil-fuel combustion as reported by the IEA.
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economy—including the entirety of the EU as well as the United States, China, India and a num-

ber of other countries—but far from all. As a consequence, Figure 1 is limited to circa 4.2 out of

the over 7 billion people worldwide. Eora meanwhile has data, though of mixed quality, for 189

countries and up to 2015. Appendix Figure 12 plots the global consumer cost of a global carbon

price of 30 USD per ton across all 189 countries in 2015. The pattern is again similar.
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Figure 6: Robustness of main results to alternative data sources

(a) Comparison to consumption survey data (b) Comparison to alternative input-output data (Eora)

Notes: Comparison of initial incidence (first 1 USD/t) of carbon pric-
ing estimated with the global demand system in this article [solid
lines] and estimates from household consumption survey data hand-
matched to WIOD sectors [dotted lines]. Survey data from the Con-
sumer Expenditure Survey (USA, 2005), EU Household Budget Sur-
vey (DEU + SWE, 2005), and the World Bank Global Consumption
Database (CHN + IND, 2005-10). The horizontal axis shows income
groups (quintiles for DEU/SWE/USA; World Bank groupings ”Low-
est”/”Low”/”Middle”/”Average”/”High” for CHN/IND). The vertical axis
shows the relative exposure of consumers in each decile to the first
marginal USD of carbon pricing as share of expenditure, equivalent to
CO2 per USD of consumption.

Notes: Comparison of simulation results using WIOD data (used through-
out this article) and Eora data. Both show the simulated consumer welfare
effect under a global uniform carbon price of 30 USD per ton of CO2 sim-
ulated at the end of 2004. WIOD results are the same as shown in Figure
1. Eora results [right axis] are based on newly estimated model param-
eters and new input-output data, with a carbon price applied to all 189
Eora countries and all greenhouse gases in the Kyoto classification, emit-
ted from a range of activities (including land use). Both shown for subset
of 40 countries in WIOD.
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5.3. Sensitivity of results to parameter choices

I have shown above that the global demand model estimated from bilateral trade flows approx-

imates demand patterns as observed in consumption survey data reasonably well. And we have

seen that the main results on the global consumer incidence of carbon pricing replicate when using

an entirely different data source, Eora rather than WIOD, along with a new set of parameter esti-

mates. Still, we may be concerned that the approach to estimating parameters could be biased in

both cases. Table 3 thus performs further sensitivity analysis, shown also in Appendix Figure 9.

On the demand side, while panel (a) of Figure 6 shows that incidence patterns simulated by the

model are similar to those based on consumer expenditure data in multiple countries, this could

mask underlying biases. I thus test the sensitivity of the main results to the choice of demand

elasticities. Row (1) of Table 3 reproduces the global incidence of a uniform carbon price of 30

USD per ton shown in Table 2 and Figure 1. A recent paper by Borusyak and Jaravel (2018) claims

that the framework by Fajgelbaum and Khandelwal (2016) used here may bias estimates of income

elasticities and that trade exposure is instead relatively neutral across the income distribution, at

least in the United States. Row (2) shows that the cost of carbon pricing across global income

quintiles remains similar when we assume homothetic demand within countries by setting all in-

come semi-elasticities β s
i = 0. This is in line with the above finding that the global incidence of

carbon pricing is largely driven by between-country differences. We may also be concerned that

the degree of demand substitution estimated from bilateral trade costs may be exaggerated. Row

(3) shows results when demand is homothetic and demand substitution is switched off, by setting

elasticities γs = 0. Estimates are then entirely based on country-aggregate demand patterns ob-

served in the data. Again, the global consumer incidence of carbon pricing looks similar, though

it appears that non-homothetic demand and demand substitution somewhat soften the regressivity,

as the Suits Index falls further from -0.18 to -0.23 without them.

On the supply side, we may worry that the gravity approach based on iceberg trade costs, proxied

by bilateral distance, produces biased estimates of substitution elasticities. The magnitude of trade

elasticities and the best way to estimate them are subject to on-going debate in the trade literature
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Table 3: Sensitivity of main results to parameter estimates - Global price of 30 USD per ton
Welfare Effect (as % of budget) Pro-/regressive (p/r)

Q1 Q2 Q3 Q4 Q5 Total Linear Suits
(1) Scenario 1: Global Price -2.59 -2.96 -3.19 -2.05 -0.92 -1.16 0.66 (r) -0.18 (r)
Demand parameters:
(2) [homothetic demand] -3.04 -3.25 -3.32 -2.09 -0.84 -1.11 0.77 (r) -0.22 (r)
(3) [homothetic & static] -3.45 -3.65 -3.72 -2.32 -0.9 -1.21 0.87 (r) -0.23 (r)
Production parameters:
(4) [doubled CES elasticities] -2.43 -2.78 -3.00 -1.96 -0.89 -1.12 0.62 (r) -0.17 (r)
(5) [halved CES elasticities] -2.65 -3.03 -3.26 -2.09 -0.93 -1.18 0.68 (r) -0.18 (r)
(6) [C&P 2015 elasticities] -2.47 -2.83 -3.05 -1.98 -0.9 -1.13 0.63 (r) -0.18 (r)
(7) [no input substitution] -3.04 -3.47 -3.73 -2.41 -1.09 -1.37 0.78 (r) -0.18 (r)

Notes: Comparison of consumer cost under different assumptions regarding income and substitution
elasticities of demand and input substitution in production. All show smoothed versions of the consumer
welfare effect under a global uniform carbon price of 30 USD per ton of CO2 simulated at the end
of 2004. (1) Scenario 1: Baseline results reported in Table 2. (2) [homothetic demand]: assumes
homothetic demand within countries, setting all β s

i = 0. (3) [homothetic & static]: Homothetic demand
with no substitution, γs = 0, based on country-average expenditure shares observed in the data. (4)
[doubled CES elasticities]: Uses twice the estimated CES production elasticities σs. (5) [halved CES
elasticities] Uses twice the estimated CES production elasticities σs. (6) [C&P 2015 elasticities]: Uses
elasticities for traded sectors estimated by Caliendo and Parro (2015), Table 1. (7) [no input substitution]
Switches off input substitution entirely, maintaining original value chain structures observed in the data.

(see for example Caliendo and Parro, 2015). Table 3 shows that my results are not especially

sensitive to the choice of CES elasticities. Row (4) assumes a higher degree of substitution, by

doubling all estimated elasticities σs. Row (5) in turn halves them. Row (6) uses trade price

elasticities estimated in Caliendo and Parro (2015), which are identified from panel variation in

tariff rates. That version also switches off cross-border substitution among non-tradeable sectors

(e.g. electricity) entirely. Finally, row (7) switches off all input substitution, maintaining the

structure of value chains observed in the data.

Table 3 shows that, while estimated magnitudes may change somewhat depending on the choice

of model parameters, the relative cost distribution across world income groups remains largely

unchanged.
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6. Conclusion

Using a model of global consumer demand and production value chains, parameterized using

trade data, I estimate the global consumer cost of carbon pricing. The price effects following

a global uniform carbon price are globally regressive. While within-country effects range from

moderately progressive to moderately regressive, the global regressivity is driven mainly by dif-

ferences between countries due to more carbon-intensive value chains in lower income countries.

The result is overturned by national carbon dividends, which redistribute carbon pricing revenue

equally among consumers within each country. The net effect becomes strongly progressive within

countries and globally, even without transfers between countries. And, as I show, the benefits from

reduced climate damage are likely to be progressive as well.

Similar results apply when pricing carbon in the EU. Price effects from the EU ETS introduced

in 2005 may have been regressive, driven again by differences between countries, with especially

high costs to consumers in Eastern European and Baltic member states. Meanwhile, a hypothetical

Border Carbon Adjustment to complement an EU-wide carbon price generates rather low costs

that are neutrally distributed.

I show that my findings replicate with alternative data, that model projections match well the ev-

idence from country-level consumer surveys, and that the headline results are robust to alternative

parameter choices. Still, my results are subject to limitations. In particular, I exclude potentially

important effects, including endogenous price adjustments under imperfect competition and in-

come effects from shifting trade patterns, which may alter the global effects of carbon pricing.

Despite these limitations, my results support the notion that carbon pricing, when designed

appropriately, can be a progressive policy. When paired with carbon dividends at the national

level, carbon pricing has progressive effects that disproportionately benefit consumers with lower

incomes, both within countries and worldwide.
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A. Modeling the global cost of carbon pricing
This Appendix provides a more detailed discussion of the model and key assumptions.

A.1. Demand: A global Almost Ideal Demand System
Much of the approach on the demand side follows Fajgelbaum and Khandelwal (2016) and is

repeated here for completeness. The core of the analysis is a global Almost Ideal Demand System
(AIDS) describing consumer preferences. AIDS was first proposed by Deaton and Muellbauer
(1980) and is characterized as follows.

Assumption A1 (AIDS Consumer Preferences) Demand of consumer h, with budget xh, over
goods j is characterized by the family of log price-independent generalized (PIGLOG) preferences
proposed by Muellbauer (1975) with indirect utility:

v(xh,p) = F

[(
xh

a(p)

) 1
b(p)
]

(11)

F(.) is increasing and well-behaved, and the price aggregators are:

a(p) = exp

(
α +

J

∑
j=1

α j log
(

p j
)
+

1
2

J

∑
j=1

J

∑
j′=1

γ j j′ log
(

p j
)

log
(

p j′
))

(12)

b(p) = exp

(
J

∑
j=1

β j log
(

p j
))

(13)

A consumer h chooses between J goods and has indirect utility v(xh,p) which depends on her to-
tal expenditure budget xh and the vector of prices p. The additional assumptions on price aggrega-
tors a(p) and b(p) close the description of the AIDS model. The AIDS model can be summarized
using the expenditure share that consumer h, with budget xh, devotes to good j:

s j(p,xh) =
x jh

xh
= α j +

J

∑
j′=1

γ j j′ log
(

p j′
)
+β j log

(
xh

a(p)

)
(14)

Expenditure of h on good j depends on preferences for good j (α j), prices of all goods j′ (p j′)
and individual real income ( xh

a(p)). Key elasticities are the cross-price elasticities between goods
j and j′ (γ j j′) and income (semi)-elasticities for each good j (β j). Positive good-specific income
elasticities (β j > 0) mean that j is a luxury good (and a necessity if β j < 0). Parameters are
restricted to ∑

J
j=1 α j = 1, ∑

J
j=1 β j = ∑

J
j=1 γ j j′ = 0 and γ j j′ = γ j j′ for all j, j′.

While allowing for heterogeneity of expenditure patterns across the income distribution, these
expenditure shares are still conveniently aggregated via an inequality-adjusted version of average
income. The aggregate share that all consumers spend on good j is:

S j = α j +
J

∑
j′=1

γ j j′ log
(

p j′
)
+β jy (15)
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Aggregate expenditure shares resemble individual ones, but individual income is replaced by
inequality adjusted real income y = log

(
x̃

a(p)

)
. This is the price-adjusted version of the inequality-

adjusted mean expenditure x̃ = xe∑ where Σ = E
[xh

x log
(xh

x

)]
is the Theil index of income inequal-

ity.
Thanks to this aggregation property, it is possible to estimate demand parameters from aggre-

gate expenditure shares. I do so using between-country trade flows, following closely the method
proposed by Fajgelbaum and Khandelwal (2016). Once parameterized, the demand system allows
for simulation of the consumption distribution within each country around aggregate expenditure
levels. Specifically, I allow average preferences for goods j (α j) to differ between countries, but
assume that consumers in all countries share the same price and income elasticities (γ j j′ and β j).

Derivation of Welfare Effect, Proposition 1:
We consider the change in the log of indirect utility of consumer h due to infinitesimal changes

in log prices p̂ j = dlog(p j) for all J goods and the log of expenditure x̂h = dlog(xh. Fajgelbaum
and Khandelwal (2016) show that the change in indirect utility is:

v̂h =
J

∑
j=1

∂ log(v(xh,p))
∂ log

(
p j
) p̂ j +

∂ log(v(xh,p))
∂ log(xh)

x̂h (16)

Equivalent variation is then defined as the change in log expenditures, ω̂h that would lead to the
indirect utility change v̂h at constant prices:

v̂h =
∂ log(v(xh,p))

∂ log(xh)
ω̂h (17)

After applying Roy’s identity
(

yh, j =−
∂v(.)/∂ p j
∂v(.)/∂xh

)
, the individual welfare effect can be separated

into three elements:

ω̂h =
J

∑
j=1

(
−p̂ j

)
s j,h + x̂h

=
J

∑
j=1

(
−p̂ j

)
S j+

J

∑
j=1

(
−p̂ j

)(
s j,h−S j

)
+ x̂h

= Ŵ+ ψ̂h+ x̂h

(18)

Here, x̂h is the income effect, Ŵ is the aggregate expenditure effect and ψ̂h is the individual ex-
penditure effect of consumer h. ψ̂h captures that consumers with different income levels may be
differentially affected by price changes because they have a different expenditure composition.

Using the expenditure shares under the AIDS demand structure, we can use the fact that s j,h−
S j = β j log

(xh
x̃

)
, to re-write the individual expenditure effect:

ψ̂h =−

(
J

∑
j=1

β j p̂ j

)
log
(xh

x̃

)
(19)
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This gives the welfare change of consumer h as stated in Proposition 1:

ω̂h = Ŵ −

(
J

∑
j=1

β j p̂ j

)
log
(xh

x̃

)
+ x̂h (20)

A.2. Supply: Input substitution in global value chains
The supply side is characterized by a set of Constant Elasticity of Substitution (CES) production

functions.

Assumption A2 (CES Production Functions) Assume that all producers in each sector j have
an identical Constant Elasticity of Substitution (CES) production function across K intermediate
inputs fk j with prices ρk j. We further assume perfect competition and constant returns to scale in
all sectors. Input choices in each sector are then equivalent to a representative producer minimiz-
ing input cost C j:

min C j = ∑
k

ρk j fk j s.t. Tj

(
∑
k

θ
1/σ j
k j f (σ j−1)/σ j

k j

)σ j/(σ j−1)

= X j (21)

For any level of output X j, producers minimize input costs C j. The expenditure share on input k
among expenditures for all intermediate inputs is given by:

Ek j =
ρk j fk j

C j
= θk jρ

(1−σ j)
k j P(σ j−1)

j (22)

The cost share of input k depends on technology factor θk j, which defines the cost share under
equal input prices. Ek j is decreasing in the price of k, ρk j, relative to the input price index Pj =

(∑
k

θk jρ
(1−σ j)
k j )1/(1−σ j). Constant returns to scale combined with perfect competition imply that

input shares and output prices are independent of final demand. No additional equilibrium price
condition is needed.

The CES production technologies translate as follows into the input-output framework, which I
use to account for CO2 emissions and, hence, price changes. Total expenditure on all intermediates
by sector j is C j = PjX j. All output is used either as intermediate input in another sector or as final
consumption, both at the same price. The difference between the final price p j for one unit of
good j and required input expenditures defines the value added share κ j =

p j−Pj
p j

, which I assume
to be constant throughout. Each dollar value of output in sector j then uses an average amount of
dollar value inputs from sectors k, ak j = Ek j(1−κ j). This yields a linear relation between input
and output in value terms:

x = Ax+y (23)

Here, x is the J-vector of aggregate outputs in value terms (elements p jX j), A is the (J×K = J2)-
matrix of normalized input requirements ak j and y the J-vector of final consumption again in value
terms (elements p jy j).

While this linear relationship follows Leontief (1970), it does not require Leontief production
technologies. The notable difference is that under CES technologies the relationship is expressed
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in value terms instead of volume. This is similar to Acemoglu et al. (2012b), who use such a linear
mapping to describe the network structure of an economy with Cobb-Douglas technologies27.

The Direct Requirement matrix A has elements ak j which show the dollar amount of intermedi-
ate input from country-sector k necessary for the production of a dollar of output in country-sector
j. Following Leontief (1970), we use A to describe the relationship between the vector of final
goods output y and total output including intermediates x as follows:

x = [I−A]−1 y = Ty (24)

This relationship yields the Total Requirement matrix T = [I−A]−1. Elements of T, tk j, describe
the dollar amount of total input from sector k embedded in a dollar of final consumption from
sector j, accounting for all upstream processes. Total input requirements are then translated into
total emissions intensities:

e = T′d (25)

The J-vector d of direct emissions intensities d j=k describes for each sector the CO2 emissions
per dollar output. Element e j of e then summarizes the total CO2 emissions intensity (tons of
CO2 per $) of final consumption from sector j, including all upstream emissions in sectors k.
The effect on final prices due to a price on carbon emissions will be a function of these total
emission intensities e j. When evaluating carbon pricing scenarios, I simulate a new equilibrium
input-output structure of the economy (A and T), which yields a new set of emissions intensities
(e). These directly translate into final price changes seen by consumers.

Price dynamics:
For any given input-output structure, the emission intensity e j of final good j determines its

relative price increase when we introduce a price on CO2 emissions. When no input substitution
takes place, this takes the following form28.

Proposition 3 (Price effect without substitution) Assume a carbon price τ (in $ per ton of CO2)
is introduced. Holding constant the structure of value chains A and hence the total emissions
content of goods e j, this will raise final prices to a new level p∗j = (1+ τe j)p j.

This is the price increase predicted by standard MRIO methods that assume fixed proportion
production functions (following Leontief, 1970). But I allow producers to substitute intermediate
inputs. This alters the structure of value chains and, consequently, emissions intensities e j. This
invites yet further adjustments to inputs until a new equilibrium is reached. I also allow carbon
prices to vary by pairs of production ( j) and input supply sectors (k).

27When technologies are of the Cobb-Douglas variety, C is constant for all price combinations (as in Acemoglu et al.,
2012b, and others). I add further flexibility in input substitution by modeling CES technologies, which means that C
adjusts when input prices change. This reduces analytical tractability, but adds what I think is important flexibility
when analyzing carbon pricing. I approximate the adjustment of inputs recursively as described in Appendix A.3.

28It is does not matter where in the supply chain the price on emissions is levied. This could be a consumption tax
levied on the final good or emissions pricing at the source. Perfect competition implies that producers will fully
pass-through price increases to consumers and competitive firms will internalize carbon prices even if they were to
be levied at the point of sale.
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Proposition 4 (Price effect with input substitution) Assume a set of carbon prices {τk j} on in-
termediate goods k used in production j is introduced. Given initial input requirements {ak j} and
direct emissions intensities {d j}, the new equilibrium production structure is defined jointly by:

a∗k j = ak j

(
(∑

i
θi j(1+τi je∗i )

(1−σ j))
1/(1−σ j)

1+τk je∗k

)σ j

∀k, j (26)

e∗ =
[
(I−A∗)−1]′d (27)

Proof. Given the assumed initial price changes to p∗k = (1+ τek)pk, the new share of inputs k in
the expenditure of sector j relative to the old share would become:

E∗k j

Ek j
= (1+ τek)

(1−σ j)

(P∗j
Pj

)(σ j−1)
(28)

Assuming unchanged value-added shares κ j, we get an updated ’Direct Requirement Matrix’
A∗ which has elements:

c∗k j =
E∗k j

Ek j

P∗j
1+ τek

=

( P∗j
1+ τek

)σ j

ck j (29)

This “Direct Requirement Matrix” at new prices now has a slightly different interpretation than
the one at original prices. The original “Direct Requirement Matrix” had elements ck j which char-
acterized the dollar value of input required from sector k to produce one dollar value of final output
in sector j. Define a new unit of measurement for each sector j, which we shall call “previous
dollar value unit” (PDU). One PDU is equal to the amount of good j that could be bought at the
original prices. Essentially, I normalize all initial prices to p j = 1 ∀ j. The elements of the new
“Direct Requirement Matrix” is then interpreted as follows: After the price change, to generate
one PDU of output in sector j we require c∗k j units (in PDU) of intermediate good k.

The “direct emissions intensity” d∗j = d j remains unchanged in this step but now also charac-
terizes the direct emissions per PDU output (i.e. the emissions related to the value-added for one
unit produced). But of course, the adjustments to input use will themselves change the structure
of supply chains and, in consequence, the emissions intensities e j and prices. I assume through-
out that the price of good j used as intermediate inputs is the same as when bought as final good
(denoted as k in those cases). Calculating new “total emissions intensities” per PDU should then
be e∗ = (I−A∗)−1d and the final goods price of j including the carbon price is 1+ τe∗j . The pro-
cess settles in equilibrium when both these conditions are met. I approximate this new structure
numerically as described in A.3.

Fuel switching: In my simulations, I allow for substitution between four groups of energy fuels:
coal, gas, oil, renewable.

Initial shares of those fuel types in the energy use of country-sectors are from WIOD (‘Emissions
relevant energy use (in TJ)’ [EM table]) and Eora [Eora26 Q-table], grouped together as follows:

To simulate fuel substitution, I rely on pairwise inter-fuel substitution elasticities drawn from
the meta analysis by Stern (2012). Specifically, I use sample-size weighted mean values for pair-
wise shadow elasticities of substitution provided in Table 3 of Stern (2012), using electricity-
specific elasticities for all renewables: Coal-Oil (sigmaCO = 1.065), Coal-Gas (σCG = 1.426),
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Table 4: Fuel type groupings used in simulations
Fuel Group WIOD Eora

Coal anthracite, lignite, coke ‘coal’
Gas natural, other gas ‘natural gas’
Oil gasoline, Diesel, jet kerosene, ‘petroleum’

LFO, HFO, naphtha
Other biogas, bio diesel, electricity, nuclear, hydroelectric,
(‘Renewable’) heat production, nuclear, hydropower, wind, solar/tide/wave,

geothermal, solar, wind biomass and waste

Notes: Overview of fuel type groupings used.

Coal-Renewable (σCR = 0.866), Oil-Gas (σOG = 2.022), Oil-Renewable (σOR = 1.060), and Gas-
Renewable (σGR = 1.099).

Relative price changes of these fuels are based on their global average price (from the BP Statis-
tical Review of World Energy 2017) and CO2 content (from the IEA 2006 Guidelines on Default
Carbon Content Values). Pairwise substitution using the above elasticities yields new simulated
fuel shares, holding constant the total energy use per (in TJ) unit of output in each country-sector.
The change in fuel shares—weighted by their emissions intensities—is then used to update the
direct emissions intensities {d j}, to be used in the above described process of intermediate input
substitution.
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A.3. Numerical approximation of new equilibrium production
I approximate numerically the new equilibrium supply chain structure A∗, emission intensities

e∗j and prices p∗k j = (1+ τk je∗j)pk j. I do this using an iterative process with the following steps:

1. Simulate new direct emissions intensities {d∗j} after fuel substitution following the approach
described in Appendix A.2.

2. Calculate initial total emissions intensities {e∗j} based on original production {ck j} paired
with updated direct emissions intensities {d∗j}.

3. Calculate initial price changes of intermediate inputs ρ̂∗k j based on {e∗j}. In scenarios with
differentiated carbon pricing (e.g. Border Carbon Adjustments), only count those emissions
from origin sectors K = S′× I that are being priced in destinations J = S×N.

4. Calculate initial adjustment of input requirements {a∗k j} based on these price changes ρ̂∗k j.

5. Calculate updated total emissions intensities {e∗j} based on updated production {c∗k j} paired
with updated direct emissions intensities {d∗j}.

6. Repeat the loop through steps 3-5 until the additional adjustments in value chains become

negligible, as defined by ∑
|∆a∗k j|

ak j
< 1

10,000 .

In all simulations reported in this article, the procedure converges very quickly, taking about
3-10 loops over steps 3-5 to settle in a state where additional rounds of adjustment are negligible.
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B. Calibrating the model
This Appendix provides further detail on the estimation of model parameters.

B.1. Demand: Estimating demand system parameters
To identify demand parameters, I follow Fajgelbaum and Khandelwal (2016) in embedding the

AIDS demand structure in a multi-sector Armington model of international trade of final goods, al-
lowing for goods within each sector to be differentiated by origin and for cross-country differences
in sectoral productivity and trade cost. Essentially, each sector from each country sells a different
variety. For WIOD, which has datta on 35 sectors and 40 countries, this translates to 1400 varieties
(J = K = 40×35).

Consumers in destination country n consume goods from sector s in origin i. To characterize
demand responses and welfare effects for households h in country n, I estimate income semi-
elasticities (β s

i ) for each of the 1400 varieties, as well as price elasticities. For the latter, I follow
Fajgelbaum and Khandelwal (2016) in assuming that there is symmetric substitution within each
sector s between goods from different countries i, but no substitution between sectors:

γ
ss′
ii′ =


−
(
1− 1

N

)
γs if i = i′ and s = s′

1
N γs if i 6= i′ and s = s′

0 otherwise
(30)

Consumers can substitute textiles from the United States with textiles from India, but they cannot
substitute textiles with minerals. To identify the 35 sector-level price elasticity parameters (γs), I
assume that trade costs between country-pairs (tni) are of the iceberg variety, implying ps

ni = tni ps
i .

Specifically, I assume that bilateral trade costs between origin i and destination n are tni =

dρ

niΠl

(
gdl

l,ni

)
ηni, where dni is bilateral distance and ρ is the distance elasticity of trade costs. Other

determinants of bilateral trade cost, namely shared borders and language, are in gl,ni. These are
transformed into regression variables Dni and Gl,ni as follows:

Dni = ln
(

dni

dn

)
−

N

∑
n′=1

(
Yn′

YW

)
ln
(

dn′i

dn′

)
(31)

Following Fajgelbaum and Khandelwal (2016), this yields an estimating equation for aggregate
expenditure by consumers in country n on goods from sector s and country i:

Ss
ni =

Y s
i

YW
+αi(Ss

n−Ss
W )− (γs

ρ
s)Dni +∑

l
(γsds

l )Gl,ni +(β s
i −αiβ

s
)Ωn + ε

s
ni (32)

These aggregate expenditure shares (Ss
ni) are observed in WIOD (and Eora). Consumers in n

buy more goods from sector s in origin country i if that sector is a large relative to the world
economy ( Y s

i
YW

) and if consumers in n spend more on goods in sector s relative to the rest of the
world ((Ss

n−Ss
W )). Variation in distance (Dni helps identify price elasticities (γs). If trade is more

concentrated among less distant country pairs within one sector than another, I estimate the former
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to face a higher price elasticity of demand.
Variation in the inequality-adjusted mean income of country n relative to the world (Ωn = yn−

yW ) helps identify the income elasticities (β s
i ). If textiles from the United States are consumed

more in richer countries, or more unequal countries, than textiles from India, then I estimate the
former to have a higher income elasticity. Ωn is calculated using country-level population and
income (GDP) from the Penn World Tables and the Gini index of income inequality from the
World Income Inequality Database (WIID). I assume that individual expenditure xh is proportional
to income, i.e. that there is a constant savings rate29, and that income is log-normally distributed.
The Gini index is easily converted into the required Theil index30. Following the methodology
of Fajgelbaum and Khandelwal (2016), I also proxy for the non-homothetic price index a(p) with
a Stone price index for each destination country n using quality-adjusted prices as provided by
Feenstra and Romalis (2014).

From the estimation of (32), I identify the following parameter estimates: α̂i,
̂

(β s
i −αiβ

s
),

(̂γsρs). A second estimation equation helps to identify the missing parameters β̂
s
. I estimate

an Engel curve projecting aggregate expenditure shares in country n for sectors s on the inequality-
adjusted real income yn:

Ss
n = α

s +β
s
yn + ε

s
n (33)

This estimation helps to identify what Fajgelbaum and Khandelwal (2016) call the “sectoral
betas”, the sector average income semi-elasticities, β

s
. εs

n is the specific taste of importer n for

sector s. These estimates β̂
s

together with the estimates of α̂i from the above gravity estimation
are sufficient to identify origin-sector specific income semi-elasticities β̂ s

i . Finally, to pin down
price elasticity parameters γ̂s, I follow Novy (2013) (and Fajgelbaum and Khandelwal, 2016) in
setting ρs = ρ = 0.177 for all s.

B.2. Supply: Estimating production function parameters
On the supply side, I again identify the relevant model parameters from trade data—this time

from bilateral inter-industry trade. I again derive a simple gravity equation to estimate the produc-
tion elasticity σ j for each industry j. CES production implies that producers in industry j spend
the following share of their expenditures on intermediate inputs from industry k:

Ek j =
ρk j fk j

PjX j
= θk jρ

(1−σ j)
k j P(σ j−1)

j (34)

I consider bilateral inter-industry trade flows between industry pairs—destination sector s in
country n (J = S×N) sources inputs from origin sector s′ in country i (in the case of WIOD
there are J×K = 14002 = 1.96million such pairs). Again, I assume that each sector s′ in origin i
produces a distinct input variety (J = S× I) and that the market for intermediate goods is perfectly

29Basing my analysis on expenditure distributions—sometimes seen as more representative of lifetime income—
should make it less likely to find regressive effects of carbon pricing than using annual income (as shown e.g.
by Hassett et al., 2009; Grainger and Kolstad, 2010).

30Assuming a log-normal distribution of expenditure with variance σ2, the Theil index is ∑ = σ2

2 where the relation

between σ2 and the Gini coefficient G is given by σ2 = 2
[G+1

2

]2
.
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competitive. I further assume that prices are the same for goods from sector s whether they are
used as intermediates or final goods (ps

i = ρs′
i ) and that traded goods are subject to iceberg trade

costs tni between destination n and origin i, ps
ni = tni ps

i . Finally, I assume that production functions
are identical for each destination sector j across countries n (σn, j = σ j and θ ss′

ni = θ ss′
i , ∀n). Each

sector s in destination n will then spend the following share on intermediate inputs from sector s′

in origin i:

Ess′
ni = θ

ss′
i (tni)

(1−σs)(ps′
i )

(1−σs)(Ps
n)

(σs−1) (35)

In its log-linear version, we obtain the following gravity equation:

log
(

Ess′
ni

)
= log

(
θ

ss′
i

)
+(1−σs)log(tni)+(1−σs)log

(
ps′

i

)
− (1−σs)log(Ps

n)

= (1−σs)log(tni)+λ
s
n +ζ

s′
i

(36)

This gravity equation is very similar to that proposed by Anderson (1979) and Anderson and
Van Wincoop (2003) to model gravity for demand of consumers with CES preferences, except that
I estimate sector-specific CES production elasticities σs. Again, I identify σs using cross-sectional
variation in bilateral trade costs tni and assume that tni = dρ

niΠl

(
gdl

l,ni

)
ηss′

ni , where dni is distance,
ρ is the distance elasticity of trade costs, and gl,ni are other gravity variables. The final estimating
equation is:

log
(

Ess′
ni

)
= (1−σs)ρlog(dni)+∑

l

[
(1−σs)dlGl,ni

]
+λ

s
n +ζ

s′
i + ε

ss′
ni (37)

Again, I obtain bilateral distance between country pairs (dni) from CEPII. The other elements
of Gl,ni are indicators for common language and a shared border, also from CEPII. I estimate this
equation separately for the 35 industries s. For estimation, I apply an ordinary least squares (OLS)
estimator with origin (country-sector) and destination (country-sector) fixed-effects. This has been
shown to be consistent (e.g. Head and Mayer, 2014). I again assume that ρ = 0.177. To account
for other factors that could affect ”multilateral resistance”, I include fixed-effect for origins (λ s

n)
and destinations (ζ s′

i ), as is common practice. Estimates are then consistent with alternative gravity
set-ups that result in multiplicative bilateral resistance terms.
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C. WIOD Country Overview

Table 5: The 40 countries included in WIOD
Country Population (mio) Avg. Consumption (k$) CO2 Intensity (kg per $ output)

AUS 20.4 31.3 0.27
AUT 8.3 32.3 0.1
BEL 10.7 29.8 0.14
BGR 7.9 3.2 0.9
BRA 187.8 3.2 0.2
CAN 32.3 27.9 0.25
CHN 1313 1.4 0.79
CYP 0.7 23.5 0.27
CZE 10.4 10.2 0.4
DEU 82.9 28.9 0.14
DNK 5.5 38.4 0.17
ESP 43.8 24.2 0.14
EST 1.4 8.6 0.61
FIN 5.3 30.9 0.18
FRA 63.5 30.6 0.08
GBR 60.7 35 0.12
GRC 11.1 22.3 0.25
HUN 10.3 9.7 0.23
IDN 227.9 1.1 0.58
IND 1148.3 0.6 0.76
IRL 4.2 34.5 0.08
ITA 59 27.7 0.12
JPN 127.9 34.6 0.12
KOR 47.9 13.5 0.3
LTU 3.5 6.7 0.31
LUX 0.5 57.9 0.04
LVA 2.3 6.6 0.26
MEX 109.3 6.9 0.26
MLT 0.4 14.6 0.21
NLD 16.5 31.9 0.15
POL 38.9 6.3 0.56
PRT 10.5 17.7 0.18
ROM 21.8 3.6 0.65
RUS 147.8 3.2 1.41
SVK 5.6 7.4 0.4
SVN 2 15.9 0.19
SWE 9.1 33.6 0.08
TUR 67.5 5.8 0.27
TWN 23.2 13.4 0.38
USA 296.8 42 0.22

Notes: The 40 countries used in the main sample. Data from WIOD in 2004.
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D. Parameter Estimates

Table 6: Average estimates of income
semi-elasticity of demand by
country

Country β̂ Country β̂

AUS 0.017 IRL 0.000
AUT 0.002 ITA 0.009
BEL -0.019 JPN 0.039
BGR -0.006 KOR 0.007
BRA -0.016 LTU 0.000
CAN -0.007 LUX -0.011
CHN -0.005 LVA 0.000
CYP 0.013 MEX -0.019
CZE -0.006 MLT 0.004
DEU -0.003 NLD -0.007
DNK 0.002 POL -0.003
ESP 0.003 PRT -0.004
EST 0.001 ROM -0.004
FIN 0.008 RUS -0.005
FRA -0.004 SVK -0.003
GBR 0.014 SVN -0.002
GRC 0.013 SWE 0.002
HUN 0.001 TUR -0.001
IDN -0.026 TWN 0.016
IND -0.031 USA 0.097

Notes: Average estimates of the income (semi)-
elasticities as estimated from (8) and (9) for the
WIOD cross-section 2004. Country averages
across the 35 supply sectors each.
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Table 7: Average estimates of demand and supply elasticities by sector

WIOD Sector β̂ γ̂ σ̂s

1 Agriculture, Hunting, Forestry and Fishing -0.022 0.007 4.589
2 Mining and Quarrying 0.000 0.001 4.967
3 Food, Beverages and Tobacco -0.016 0.015 4.353
4 Textiles and Textile Products -0.004 0.002 4.726
5 Leather, Leather and Footwear -0.001 0.001 5.394
6 Wood and Products of Wood and Cork 0.000 0.000 4.937
7 Pulp, Paper, Paper , Printing and Publishing 0.002 0.002 4.601
8 Coke, Refined Petroleum and Nuclear Fuel 0.000 0.003 5.203
9 Chemicals and Chemical Products -0.001 0.003 4.479

10 Rubber and Plastics 0.000 0.001 4.694
11 Other Non-Metallic Mineral 0.000 0.001 4.725
12 Basic Metals and Fabricated Metal 0.000 0.002 4.429
13 Machinery, Nec -0.005 0.005 4.539
14 Electrical and Optical Equipment -0.004 0.005 4.420
15 Transport Equipment -0.003 0.006 4.482
16 Manufacturing, Nec; Recycling 0.001 0.002 4.676
17 Electricity, Gas and Water Supply 0.000 0.006 4.779
18 Construction -0.014 0.041 4.107
19 Sale, Mntnce and Repair Motor Veh.; Retail Sale of Fuel 0.003 0.004 4.821
20 Wholesale Trade and Commission Trade, Except of Motor Veh. 0.001 0.015 4.333
21 Retail Trade, Except of Motor Veh.; Repair of Household Goods 0.001 0.017 4.523
22 Hotels and Restaurants 0.006 0.014 4.697
23 Inland Transport -0.008 0.006 4.579
24 Water Transport -0.001 0.000 5.374
25 Air Transport 0.000 0.001 5.148
26 Other Supporting and Aux. Transport Activities; Travel Agencies 0.002 0.002 4.779
27 Post and Telecommunications 0.000 0.006 4.792
28 Financial Intermediation 0.006 0.013 4.845
29 Real Estate Activities 0.015 0.031 4.900
30 Renting of M& Eq and Other Business Activities 0.003 0.008 4.323
31 Public Admin and Defence; Compulsory Social Security 0.007 0.040 4.387
32 Education 0.004 0.015 4.875
33 Health and Social Work 0.022 0.026 4.593
34 Other Community, Social and Personal Services 0.004 0.016 4.467
35 Private Households with Employed Persons 0.001 0.001 5.657

Notes: Average estimates of the income (semi)-elasticities and price elasticities as estimated
from (8) and (9) for the WIOD cross-section 2004. Sector averages across the 40 origin
countries each. Third column are CES production elasticities estimated from (10).
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Table 8: Consistency of parameter estimates - β̂

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
2000 1.00 0.97 0.98 0.96 0.92 0.89 0.82 0.69 0.58 0.66
2001 0.97 1.00 0.96 0.94 0.92 0.88 0.81 0.69 0.58 0.64
2002 0.98 0.96 1.00 0.99 0.96 0.93 0.88 0.77 0.67 0.73
2003 0.96 0.94 0.99 1.00 0.99 0.97 0.93 0.84 0.75 0.80
2004 0.92 0.92 0.96 0.99 1.00 0.99 0.97 0.90 0.82 0.85
2005 0.89 0.88 0.93 0.97 0.99 1.00 0.99 0.93 0.86 0.89
2006 0.82 0.81 0.88 0.93 0.97 0.99 1.00 0.97 0.92 0.93
2007 0.69 0.69 0.77 0.84 0.90 0.93 0.97 1.00 0.98 0.97
2008 0.58 0.58 0.67 0.75 0.82 0.86 0.92 0.98 1.00 0.97
2009 0.66 0.64 0.73 0.80 0.85 0.89 0.93 0.97 0.97 1.00

Notes: Pairwise correlation, 1400 income elasticities estimated from (8) and (9), WIOD cross-
sections.

Table 9: Consistency of parameter estimates - γ̂

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
2000 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99
2001 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99
2002 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00
2003 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2004 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2005 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2006 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2007 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2008 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2009 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Notes: Pairwise correlations, 35 price elasticity parameters estimated from (8), WIOD cross-
sections.

Table 10: Consistency of parameter estimates - σ̂

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
2000 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.98
2001 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.98
2002 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.98
2003 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99
2004 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99
2005 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2006 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 0.99
2007 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
2008 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00
2009 0.98 0.98 0.98 0.99 0.99 1.00 0.99 1.00 1.00 1.00

Notes: Pairwise correlations, 35 CES elasticities estimated from (10), WIOD cross-sections.
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E. Additional results

Figure 7: Global price of 30 USD/t - All countries have Swedish emissions intensities]

(a) Global distribution (b) Within-country distribution

Notes: Consumer welfare effect under a global uniform carbon price of 30 USD per ton of CO2 simulated at the end of 2004 (40 WIOD countries), but assigning
the emissions intensities of the Swedish sectors (dis) to other countries worldwide. The horizontal axis shows percentiles of the income/expenditure distribution,
both globally (Panel a) and within each of the 40 WIOD countries (Panel b) in 2004. Otherwise equivalent to Figure 1 and Figure 2.
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Figure 8: Global price of 30 USD/t and national carbon dividend [source-side tax] - Consumer cost

(a) Global distribution (b) Within-country distribution

Notes: Consumer welfare effect under a global uniform carbon price of 30 USD per ton of CO2 simulated in 2004 (40 WIOD countries), net of the benefits from a
per capita carbon dividend in each country. Equivalent to Figures 3, except that here revenue is collected and redistributed in the country where emissions occur in
production. The horizontal axis shows percentiles of the income/expenditure distribution, both globally (Panel a) and within each of the 40 WIOD countries (Panel
b) in 2004.
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Figure 9: Sensitivity of main results to parameter estimates

(a) Demand: Income and substitution elasticities (b) Supply: Substitution elasticities

Notes: Comparison of simulation results under different assumptions re-
garding income and substitution elasticities on the demand side. All show
smoothed versions of the consumer welfare effect under a global uniform
carbon price of 30 USD per ton of CO2 simulated at the end of 2004. The
solid blue line replicates the baseline results in Figure 1. The dotted red
line shows the same estimates assuming homothetic demand within coun-
tries, setting all β s

i = 0. The black squares in addition switch off demand
substitution, γs = 0. It is thus based entirely on country-average expendi-
ture shares observed in the data. The horizontal axis shows percentiles of
the income/expenditure distribution across the 4.2 billion inhabitants of
the 40 WIOD countries in 2004. The consumer gain is the welfare effect
equivalent to a share change the total expenditure budget.

Notes: Comparison of simulation results under different assumptions re-
garding substitution elasticities in production. All show smoothed ver-
sions of the consumer welfare effect under a global uniform carbon price
of 30 USD per ton of CO2 simulated at the end of 2004. The solid blue
line replicates the baseline results in Figure 1. The dashed red line shows
the same estimates when doubling the estimated CES production elastic-
ities σs. The dotted red line instead uses halved elasticities. The dashed
black line uses elasticities for traded sectors estimated by Caliendo and
Parro (2015), Table 1. The black squares switch off input substitution
entirely, maintaining original value chain structures observed in the data.
The horizontal axis shows percentiles of the income/expenditure distribu-
tion across the 4.2 billion inhabitants of the 40 WIOD countries in 2004.
The consumer gain is the welfare effect equivalent to a share change the
total expenditure budget.
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F. Alternative carbon price of 100 USD/t in 2004

Figure 10: Global price of 100 USD/t - Consumer cost

(a) Global price (b) Global price + dividends

Notes: Consumer welfare effect under a global uniform carbon price of 100 USD per ton of CO2 simulated in 2004 (40 WIOD countries), standalone (Panel a) and
net of the benefits from a per capita carbon dividend in each country (Panel b). The horizontal axis shows percentiles of the global income/expenditure distribution
across the 40 WIOD countries. Otherwise equivalent to Figure 1 and Figure 3 (Panel a).
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Figure 11: EU ETS and BCA of 100 USD/t - Consumer cost

(a) EU Emission Trading Scheme (b) EU Border Carbon Adjustment

Notes: Consumer welfare effect under two EU carbon pricing scenarios: An EU-wide (27 countries) uniform carbon price of 100 USD per ton of CO2, applied to
the EU ETS target sectors and simulated in 2004 (Panel a) and a Border Carbon Adjustment to complement an EU-wide (27 countries) uniform carbon price of 30
USD per ton of CO2, applied to all sectors and simulated in 2004 (Panel b). The horizontal axis shows percentiles of the global income/expenditure distribution
across the 40 WIOD countries. Otherwise equivalent to Panels (a) of Figures 4 and 5 respectively.
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G. Carbon price in 189 countries (Eora) - 2015

Figure 12: Global price of 30 USD/t - Global distribution of consumer cost (Eora)

Notes: This figure shows the global distribution of the consumer welfare effect under a global uniform price of 30
USD per ton of greenhouse gas emissions (CO2e) simulated in 2015 (189 Eora countries). The horizontal axis shows
percentiles of the income/expenditure distribution across the 7.2 billion inhabitants of the 189 Eora countries in 2015.
The price is applied to all 189 Eora countries and all greenhouse gases (Kyoto classification) emitted from a large
range of activities (including land use). The consumer gain is equivalent to a share change in total expenditure budget
(dashed) and approximated with a 10th degree polynomial (solid). Shaded regions are 95% confidence intervals from
500 separate simulations, each using a different set of model parameters drawn from the joint normal distributions
for parameter estimates from estimations (8), (9) and (10).
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